CHROM. 23 047

# **Short Communication**

# Thin-layer chromatography of thiazolidinones. I

RAJ KUMAR UPADHYAY\*, NAMITA AGARWAL and NEELU GUPTA Chemistry Department, NREC College, Khurja-203131 (India) (First received June 20th, 1989; revised manuscript received October 31st, 1990)

## ABSTRACT

1,4-Thiazolidinones, the cyclocondensation products of ketoanils with thioglycolic acid, including isomers, have been chromatographed on starch bound silica gel thin-layers using one- and two-component solvent systems and effects of various properties of developing solvents and migrating species on  $R_F$  values have been investigated beside the separation, identification and estimation.

#### INTRODUCTION

Although thin-layer chromatographic (TLC) and paper chromatographic studies on heterocyclic organic compounds are well documented and numerous reports are also available on isomers, 1,4-thiazolidinones have not previously been investigated. This led us to carry out TLC studies, as this technique is superior to others in providing rapid and better separation, on a few 1,4-thiazolidinones including their isomers. The effects of various properties of developing solvents and thiazolidinones on  $R_F$  values and the separation of isomers were investigated. The relationship between the infrared spectral frequencies of characteristic groups and  $R_F$  values in different solvents were used for the identification of compounds.

### EXPERIMENTAL

#### Materials

1,4-Thiazolidinones were obtained by reaction of ketoanils [1] with thioglycolic acid in dry benzene followed by refluxing for 15–20 h and neutralizing the reaction mixture with sodium hydrogencarbonate. The composition of each product, purified by column chromatography using silica gel G as sorbent and acetone as solvent, was confirmed by elemental analysis and infrared spectrometry, as reported elsewhere [2].

In synthetic work reagent-grade chemicals were used as received whereas in TLC studies they were used after purification involving drying and distillation.

### Procedure

For coating the plates an aqueous slurry containing a homogeneous mixture of silica gel G (BDH) and starch (19:1, w/w) was spread on glass plates ( $18 \times 10$  cm) with a laboratory-built applicator [3]. The coated plates were dried in air. Both sides of the gel layer were scraped off to a width of about 5 mm. Before use the coated plates were activated by heating at *ca*. 100°C for 1 h.

For qualitative studies warm plates (with a 0.10-cm thick layer), to ensure compactness of spots, were spotted with standard solutions of samples in acetone as small drops using glass capillaries whereas in quantitative work known volumes of solutions were applied with a micropipette to a 0.15-cm thick gel layer. Sample solutions were applied as series of spots or bands in a line 2 cm from the edge of the plate. The oven-dried loaded plates were developed in rectangular glass chambers with ground-in-lids by the ascending technique. To obtain reproducible results the development chambers were saturated with solvent before use. When development had proceeded for ca. 8 cm the plate was removed from the chamber. Owing to the dark colours produced by the analytes their spots were readily discernible in daylight.

For quantification the component bands were scraped off, treated with 15–20 ml of acetone to extract the thiazolidinones and the solutions were evaporated to 5 ml. The absorbances of the solutions were measured on a Bausch and Lomb Spectronic-20 spectrophotometer at the wavelengths of maximum absorption of the solutes and the concentrations were calculated from linear calibration graphs obtained in the range 0–500  $\mu$ g under identical conditions of medium (acetone) and temperature (27 ± 2°C).

## RESULTS AND DISCUSSION

## Effects of various parameters on $R_F$ values

The effects of the development rate, gel layer thickness and the presence of other compounds on the  $R_F$  values were examined for some thiazolidinones as migrating spots in selected solvents. The  $R_F$  values determined at two development rates (measured at plate angles of 80° and 50° from the horizontal plane) are given in Table I. As can be seen, the  $R_F$  values were independent of development rate. Almost identical  $R_F$  values obtained when the compounds migrated individually (Table II) and in mixtures (containing up to six compounds); hence the migration is independent of the presence of other compounds. The  $R_F$  data for ternary and binary mixtures of isomers in Tables II and III show a lowering of  $R_F$  values with increase in gel layer thickness.

The effect of solvent polarity on  $R_F$  values was studied with all the thiazolidinones in both oxygen-containing and non-oxygen-containing solvents. The  $R_F$  orders, isobutanol < n-butanol, *n*-butanol < ethanol and carbon tetrachloride < dichloromethane < chloroform, corresponding to the solvent polarities, show that the  $R_F$  values and their sequences are governed by the solvent polarity.

TLC studies of isomeric ternary nitro- and methoxythiazolidinone mixtures and binary naphthyl compound mixtures revealed particular  $R_F$  orders depending on the nature of the solvent, *i.e.*, whether oxygen-containing or non-oxygen-containing, alcoholic or ketonic, or a one- or two-component system.

To study the effect of the nature of substituents on  $R_F$  values, para-substituted

| I   |  |
|-----|--|
| BLE |  |
| ΤA  |  |

EFFECT OF DEVELOPMENT RATE ON  $R_p$  VALUES



| 2                                 |                    |                          |                                     |                                                   |                                      |                                                   |
|-----------------------------------|--------------------|--------------------------|-------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------------------------|
| Developing solvent                | Development        | $R_{\rm F} \times 100^a$ |                                     |                                                   |                                      |                                                   |
|                                   | rates (mm/n)       | RC <sub>6</sub> H,       | RC <sub>6</sub> H <sub>4</sub> SH-0 | RC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> -0 | RC <sub>6</sub> H₄NO <sub>2</sub> -m | RC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> -p |
| Acetone                           | 69(43)             | 94(94)                   | 93(93)                              | 92(92)                                            | (06)68                               | 92(92)                                            |
| n-Butanol                         | 45(30)             | 94(94)                   | 95(94)                              | 94(94)                                            | 87(87)                               | 00(00)                                            |
| Chloroform                        | 107(67)            | (00)00                   | 63(63)                              | 43(43)                                            | 53(53)                               | 63(63)                                            |
| Dioxane                           | 71(45)             | 93(92)                   | 98(98)                              | (86)66                                            | 94(94)                               | 97(97)                                            |
| Diethyl ether                     | 156(98)            | 00(00)                   | (96)96                              | 86(86)                                            | 62(62)                               | 62(62)                                            |
| Benzene-ethanol (7:3, v/v)        | 107(70)            | 70(70)                   | 93(93)                              | 78(78)                                            | 72(72)                               | 65(65)                                            |
| Benzene-ethanol (2:3, v/v)        | 86(54)             | 97(98)                   | 98(99)                              | 94(93)                                            | 93(93)                               | 98(97)                                            |
| <sup>a</sup> First and second (in | parentheses) value | es were measured         | at plate angles of 8                | 0° and 50° respectiv                              | ely.                                 |                                                   |

SHORT COMMUNICATIONS

| Compound                                                                                     | Spot colour     | IR fre | quencies (cm <sup>-1</sup> ) | $R_{\rm F} \times 10$ | 0          |         |         |           |             |              |              |               |
|----------------------------------------------------------------------------------------------|-----------------|--------|------------------------------|-----------------------|------------|---------|---------|-----------|-------------|--------------|--------------|---------------|
|                                                                                              |                 | v C-N  | l v C=0 (ring)               | Diethyl               | Isobutanol | Ethyl   | Benzene | Toluene   | Chloroform  | Benzer       | ie-ethai     | lor           |
|                                                                                              |                 |        |                              | ether                 |            | acetate | -       |           |             | 7:3<br>(v/v) | 1:1<br>(v/v) | 24:1<br>(v/v) |
| RC <sub>6</sub> H5                                                                           | Light brown     | 1590   | 1720                         | 8                     | 80         | 94      | 8       | 00        | 8           | 70           | 87           |               |
| RC <sub>6</sub> H <sub>4</sub> SH-0                                                          | Light brown     | 1600   | 1690                         | 96                    | 95         | 85      | 28      | 00        | <b>e</b> _: | 96           | 100          | I             |
| RC <sub>5</sub> H <sub>4</sub> N-0                                                           | Dark brown      | 1590   | 1695                         | 8                     | 8          | 8       | 8       | 8         | 00          | 1            | 1            | ļ             |
| RC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> -0                                            | Light yellow    | 1600   | 1780                         | 86                    | 92         | 75      | 35      | 25        | 43          | 78           | 100          | <b>66</b>     |
| RC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> -m                                            | Yellow          | 1600   | 1740                         | 62                    | 85         | 20      | 19      | 14        | 53          | 72           | 100          | 50            |
| RC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> -p                                            | Yellow          | 1600   | 1720                         | 62                    | 85         | 72      | 19      | <b>20</b> | 63          | 65           | 100          | 30            |
| RC <sub>6</sub> H <sub>4</sub> OCH <sub>3-0</sub>                                            | Light yellow    | 1585   | 1780                         | 00                    | 92         | 82      | 8       | 00        | 00          | 16           | 100          | I             |
| RC <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -m                                           | Brownish yellow | 1585   | 1775                         | 8                     | 92         | 8       | 8       | 00        | 00          | 84           | 100          | I             |
| RC <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -p                                           | Brownish yellow | 1580   | 1760                         | 8                     | 89         | 84      | 67      | <b>,</b>  | 00          | 68           | 100          | ł             |
| $RC_{10}H_{9}-\alpha$                                                                        | Light brown     | 1630   | 1800                         | 00                    | 85         | 97      | 50      | 00        | 00          | 100          | 100          | I             |
| RC <sub>10</sub> H <sub>9</sub> -β                                                           | Red-brown       | 1600   | 1720                         | 8                     | 85         | 95      | 50      | 46        | 00          | 93           | 87           | I             |
| RC <sub>6</sub> H <sub>4</sub> Cl-p                                                          | Yellowish brown | 1580   | 1770                         | 8                     | 89         | 86      | 67      | 8         | 00          | <u>8</u> 6   | 100          | ł             |
| RC <sub>6</sub> H <sub>4</sub> Br-p                                                          | Brownish yellow | 1585   | 1680                         | 00                    | 89         | 85      | 67      | 8         | 00          | 95           | 100          | ł             |
| $RC_6H_4I-p$                                                                                 | Brown           | 1590   | 1780                         | 8                     | 89         | 85      | 67      | 8         | 00          | 96           | 100          | I             |
| RC <sub>6</sub> H <sub>4</sub> N(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> - <sub>1</sub> | Purple-brown    | 1590   | 1690                         | 8                     | 00         | 00      | 00      | 8         | 00          | T            | 8            | ł             |
| RC <sub>6</sub> H <sub>4</sub> CH <sub>3</sub> - <i>p</i>                                    | Yellowish brown | 1590   | 0691                         | 98                    | 78         | 94      | 67      | 8         | 00          | 75           | 92           | I             |
| RC <sub>6</sub> H <sub>4</sub> R-p                                                           | Yellowish brown | 1580   | 1680                         | 8                     | 00         | 00      | 00      | 8         | 8           | 80           | 85           | I             |
| RC <sub>6</sub> H <sub>4</sub> C <sub>6</sub> H <sub>4</sub> R-p                             | Light brown     | 1575   | 1760                         | I                     | 00         | 6L      | 67      | 8         | 00          | 82           | 79           | I             |

TABLE II

## TABLE III

## QUANTITATIVE ANALYSIS OF ISOMERIC THIAZOLIDINONE MIXTURES

| Isomeric                                               | Experiment 1 <sup>a</sup> |                       |                      |              |               |               |            |       |               |
|--------------------------------------------------------|---------------------------|-----------------------|----------------------|--------------|---------------|---------------|------------|-------|---------------|
| in mixture                                             | Amount loaded (µg)        | Amount recovered (µg) | <b>M.D</b> .<br>(μg) | S.D.<br>(μg) | R.S.D.<br>(%) | Error<br>(%)  |            |       |               |
| RC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> -0      | 150                       | 148,149,148.5         | 0.33                 | 0.41         | 0.28          | 1.00          |            |       | e             |
| $RC_{6}H_{4}NO_{3}-m$                                  | 150                       | 149,149.5,150         | 0.33                 | 0.41         | 0.27          | 0.33          |            |       |               |
| $RC_{e}H_{A}NO_{1}-p$                                  | 150                       | 150.5,148.5,149       | 0.78                 | 0.85         | 0.57          | 0.45          |            |       |               |
| RC H OCH -0                                            | 100                       | 99,99.5,100.5         | 0.55                 | 0.62         | 0.63          | 0.34          |            |       |               |
| $RC_6H_4OCH_3-m$                                       | 100                       | 100,99.5,99.5         | 0.22                 | 0.24         | 0.24          | 0.34          |            |       |               |
| RC <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -m     | 100                       | 99.5,99,99            | 0.22                 | 0.24         | 0.23          | 0.83          |            |       |               |
| RC <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -p     | 100                       | 99.5,98.5,99.5        | 0.44                 | 0.47         | 0.48          | 0.83          |            |       |               |
| RC10Ho-a                                               | 100                       | 99,99,99              | 0.00                 | 0.00         | 0.00          | 1.00          |            |       |               |
| $\frac{\mathrm{RC}_{10}^{10}\mathrm{H}_{9}^{2}\beta}{$ | 60                        | 59.5,59.5,58.5        | 0.44                 | 0.47         | 0.80          | 1.39          |            |       |               |
| Isomeric                                               | Experiment 2ª             |                       |                      |              |               |               |            |       |               |
| thiazolidinones                                        | A                         | A                     | МР                   | 6 D          | DED           | Ennon         |            |       |               |
| in mixture                                             | Amount loaded             | Amount recovered      | M.D.                 | 5.D.         | K.S.D.        | Error<br>(9/) |            |       |               |
|                                                        | (µg)                      | (µg)                  | (µg)                 | (µg)         | (70)          | (70)          |            |       |               |
| RC H NO -0                                             | 150                       | 148 5 149 5 148 5     | 0 44                 | 0.47         | 0.32          | 0.78          | 2          |       |               |
| RC H NO -m                                             | 300                       | 298 298 5 298         | 0.12                 | 0.23         | 0.08          | 0.61          |            | · .   |               |
| $RC_{14}NO_{2}m$                                       | 300                       | 299,299.5,300         | 0.33                 | 0.41         | 0.14          | 0.17          |            |       |               |
| RC H OCH -a                                            | 100                       | 99 5 99 5 99 5        | 0.00                 | 0.00         | 0.00          | 0.50          |            |       |               |
| RC H OCH -m                                            | 60                        | 60 5 59 59 5          | 0.55                 | 0.62         | 1 04          | 0.57          |            |       |               |
| RC H OCH -m                                            | 120                       | 119 5 120 119         | 0.33                 | 0.41         | 0.34          | 0.42          |            |       |               |
| RC H OCH -n                                            | 60                        | 50 50 50 5            | 0.12                 | 0.23         | 0.40          | 1 39          |            |       |               |
| $PC H - \alpha$                                        | 60                        | 59,59,59.5            | 0.44                 | 0.47         | 0.10          | 1.12          |            |       |               |
| $RC_{10}H_9-\beta$<br>$RC_{10}H_9-\beta$               | 100                       | 99,98.5,99.5          | 0.33                 | 0.41         | 0.41          | 1.00          | <u>`</u> 1 |       |               |
| Isomeric<br>thiazalidinanes                            | Experiment 3 <sup>e</sup> |                       |                      |              |               |               | $R_{F}$    | < 100 | Resolving     |
| in mixture                                             | Amount loaded (µg)        | Amount recovered (µg) | Μ.D.<br>(μg)         | S.D.<br>(μg) | R.S.D.<br>(%) | Error<br>(%)  |            |       |               |
| RC <sub>6</sub> H <sub>4</sub> NO <sub>2</sub> -0      | -                         |                       |                      | _            | _             | -             | 65         | 1     | Benzene-      |
| $RC_6H_4NO_2-m$                                        | -                         | -                     | _                    | -            | -             | -             | 49         | }     | ethanol       |
| $RC_6H_4NO_2-p$                                        | -                         | <u> </u>              | -                    |              | -             | _             | 29         | J     | (24:1, v/v)   |
| RC <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -0     | _                         | _                     | -                    | -            |               |               | 80         | า     |               |
| $RC_6H_4OCH_3-m$                                       |                           |                       |                      | —            | -             |               | 00         |       | Ethyl acetate |
| $RC_6H_4OCH_3-m$                                       | 160                       | 159,158.5,158.5       | 0.12                 | 0.23         | 0.15          | 0.83          | 00         | 1     |               |
| RC <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -p     | 120                       | 119,119.5,118.5       | 0.33                 | 0.41         | 0.34          | 0.83          | 82         | J     |               |
| $RC_{10}H_{9}-\alpha$                                  |                           |                       |                      |              |               |               | 00         | ι     |               |
| $\mathbf{RC}_{10}\mathbf{H}_{9}$ - $\beta$             | -                         | -                     | -                    | -            | -             | -             | 45         | ſ     | Toluene       |

<sup>a</sup> M.D. = Mean or average deviation; S.D. = standard deviation; R.S.D. = relative standard deviation.

thiazolidinones were chosen, as in this position steric effects are smaller than in other positions and the nature of the substituent group predominates. The  $R_F$  values of substituted compounds were compared with that of unsubstituted phenylthiazolidinone. In most of the developing solvents examined the  $R_F$  values of the substituted phenylthiazolidinones were generally higher than that of the unsubstituted compound, irrespective of the nature of the substituent in the phenyl group, whether electron donating [CH<sub>3</sub>, R, C<sub>6</sub>H<sub>4</sub>R, I or N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>] or electron withdrawing (NO<sub>2</sub>, OCH<sub>3</sub>, Br or Cl).

The IR stretching frequencies of the characteristic C–N and C = O (ring) groups of thiazolidinones, being highly sensitive to the nature and position of substituents, were correlated with the  $R_F$  values in almost all of the developing solvents. In *para*thiazolidinones both spectral parameters, which are in accord with the electron-repelling ability of the substituents, fall in the orders opposite to those of the  $R_F$  values. In isomers the retention orders were different in different systems and similar or opposite to the order of the IR frequencies.

#### Separation, identification and determination of thiazolidinones in mixtures

Among different solvents tried for the separation of thiazolidinones, benzene showed the highest resolving capacity as it could resolve several mixtures of six compounds; the best resolution of five or less compounds, however, could only be achieved in toluene. For the ternary mixture of nitrothiazolidinones and binary mixtures of naphthyl- and methoxythiazolidinones benzene-ethanol (24:1, v/v) and toluene and ethyl acetate, respectively, are the best resolving solvents. Spectral and  $R_F$  correlations were used for the identification of mixture components after separation.

In addition to the solvents listed in Table II, several others were also tried. In acetone, ethanol, acetic acid, dioxane and benzene-ethanol (3:2, 1:1 and 2:3) all the substances had very high  $R_F$  values and in carbon tetrachloride and dichloromethane all substances, except the *o*-nitrophenyl compound ( $R_F$  0.07) and all three nitrophenyl compounds ( $R_F$  0.44), respectively remained at the origin.

In order to test the application of the TLC method in the analysis of thiazolidinones, various mixtures were resolved qualitatively on 0.10-cm thick layers (Table II) and a few typical mixtures of isomeric compounds including a ternary mixture of nitrothiazolidinones in benzene–ethanol (24:1, v/v), and binary mixtures of naphthyland methoxythiazolidinones in toluene and ethyl acetate, respectively, were analysed quantitatively on 0.15-cm thick layers (Table III). The highest amounts of isomers resolved (Table III) from their mixtures reveal the maximum separation limits of this method. The reproducibility of the results, as can be seen from Table III, is good.

#### ACKNOWLEDGEMENTS

We are grateful to Dr. G. S. Vashishtha, Principal, for providing facilities for this work; N. A. also extends thanks to CSIR, New Delhi, for the award of a Junior Research Fellowship.

#### REFERENCES

- 1 R. K. Upadhyay and N. Agarwal, J. Indian Chem. Soc., submitted for publication.
- 2 R. H. Upadhyay and N. Agarwal, Acta Chim. Hung., submitted for publication.
- 3 E. Stahl, Thin-Layer Chromatography, Springer, Berlin, 2nd ed., 1966, p. 56.